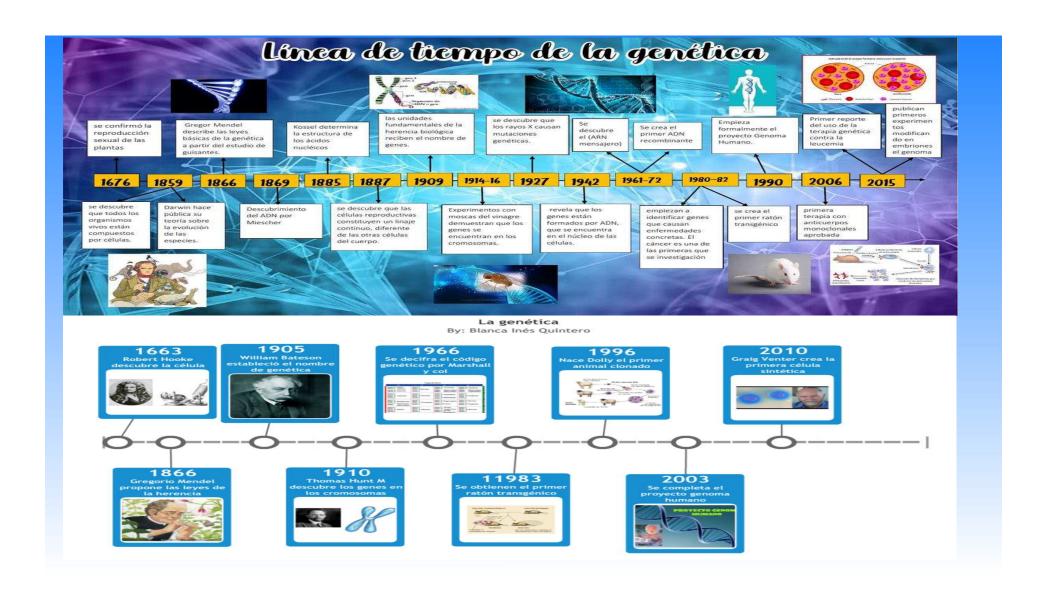
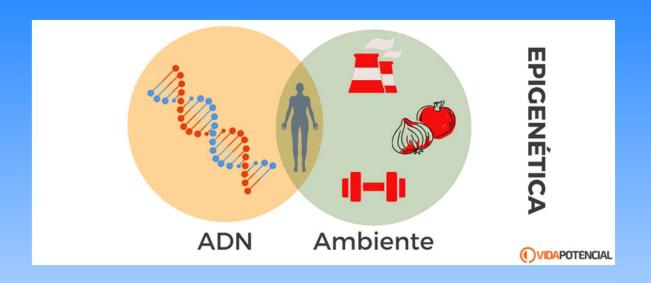
PROGRAMA NACIONAL DE FORMACIÓN EN MENOPAUSIA ONLINE

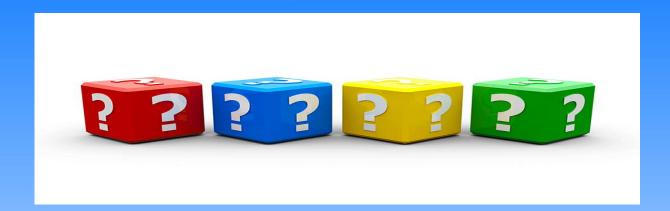
Genética y epigenética en la IOP




Jesús Presa Lorite Hospital Universitario de Jáen

La genética es la parte de la ciencia que estudia la herencia, la estructura y función de los genes y la variación de los seres vivos.

El ser humano tiene unos 30.000 genes que contienen las instrucciones que determinan el crecimiento, el desarrollo y el funcionamiento del organismo. Los genes se encuentran distribuidos en 23 pares de cromosomas



La epigenética (del griego epi, en o sobre, -genética) es el estudio de los mecanismos que regulan la expresión de los genes sin una modificación en la secuencia del ADN. Establece la relación entre las influencias genéticas y ambientales que determinan un fenotipo.

La medicina personalizada es una práctica emergente de la medicina que utiliza el perfil genético de un individuo para guiar las decisiones tomadas en relación con la prevención, diagnóstico y tratamiento de la enfermedad

ASESORAMIENTO GENÉTICO

¿CONSIDERAS IMPORTANTE EL ESTUDIO Y EL CONOCIMIENTO GENÉTICO EN EL TRATAMIENTO DE LA IOP?

ANTES DE TENER HIJOS (27-28 AÑOS Y FINAL DE RESIDENCIA) ¿QUERRÍAS SABER SI ERES PORTADORA DE MUTACIÓN GENÉTICA QUE PUEDE PROVOCAR IOP?

MAGNITUD DEL PROBLEMA

Hasta un 30% de las mujeres con IOP idiopático tienen antecedentes familiares de menopausia precoz o de IOP, lo que sugiere una etiología genética. Y en el 70 % el mecanismo genético responsable es desconocido

IOP origen	Idiopática (50 %)				
	Genética	Alteraciones del cromosoma X (5 %): monosomía X, trisomía X, deleciones, traslocaciones, síndrome X frágil			
		Alteraciones autosómicas: mutación del receptor FSH, síndrome de Bloom, ataxia telangiectasia, anemia de Fanconi, mutación del gen FOXL2 Patología tiroidea autoinmune, síndrome de Addison, diabetes mellitus, síndrome poliglandular autoinmune tipos 1 y 2			
	Autoinmune				
	Infecciosa	Ooforitis por parotiditis, tuberculosis, malaria, varicela, Shigella, citomegalovirus, herpes simple			
	Metabólica	Déficit de 17-α-hidroxilasa, galactosemia, déficit de aromatasa			
IOP de origen iatrogénico (25 %)	Quimioterapia Radioterapia Embolización de o Ooforectomía Histerectomía	vasos pelvianos			

Fuente: Nelson LM. Primary Ovarian insufficiency. N Engl J Med. 2009:360:606-14.

MAGNITUD DEL PROBLEMA

Cuando ocurre la amenorrea primaria

21% anomalía cariotipo

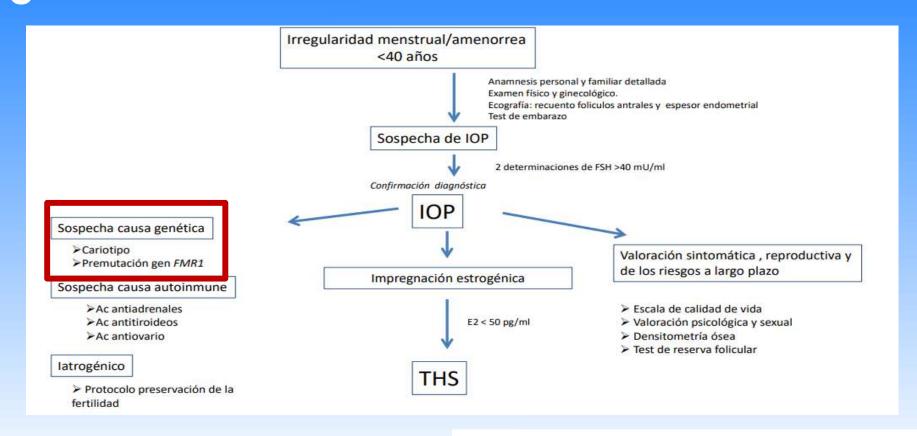
Cuando la amenorrea es secundaria.

11% anomalía cariotipo

Los genes responsables que se han identificado afectan principalmente al cromosoma X o, con menos frecuencia, a variaciones genéticas autosómicas.

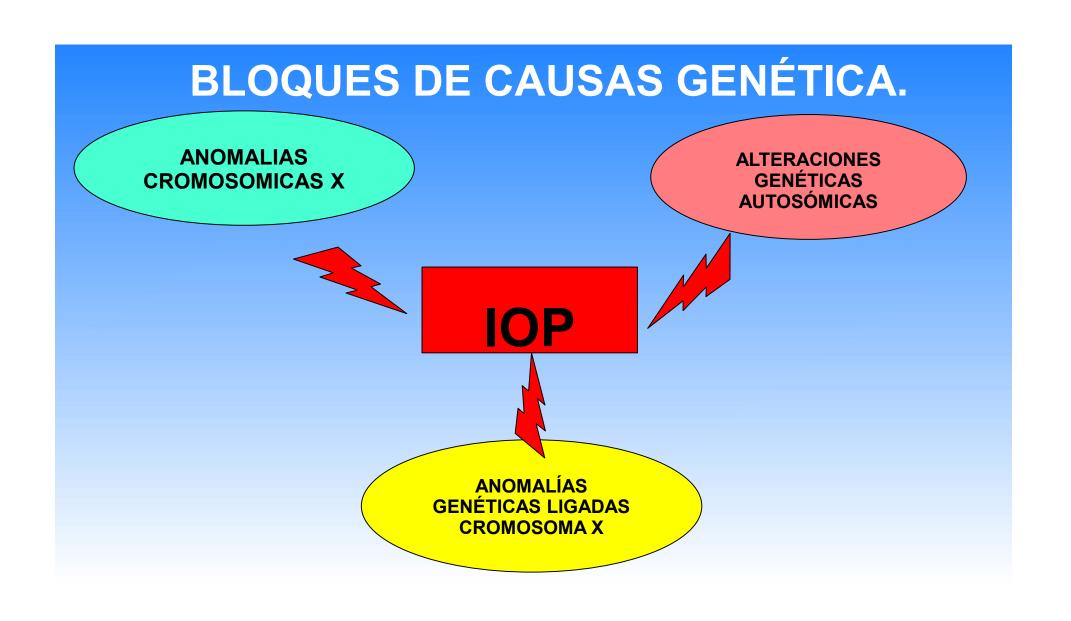
Estos pueden afectar el desarrollo y la función gonadales a través de la replicación y reparación del ADN, la meiosis, las vías hormonales, inmunes o metabólicas

Tucker EJ, Grover SR, Bachelot A, Touraine P, Sinclair AH. Premature ovarianinsufficiency: new perspectives on genetic cause and phenotypic spectrum. Endocrine Rev2016;37:609–35


Reference	Frequency of CA (%)	No. of CA	Sample size	Clinical characteristics	Population
Ayed et al. (2014)	18.0	18	100	PA, SA	Tunisian
Kalantari et al. (2013)	10.05	18	179	PA, SA	Iranian
Jiao et al. (2012)	12.1	64	531	PA, SA	Chinese (Jinan, Beijing, Shenzhen
Baronchelli et al. (2011)	0.01	27	269	PA, SA, EM	Italian
Lakhal et al. (2010a)	8.01	108	1000	PA, SA	Tunisian
Ceylaner et al. (2010)	25.3	19ª	75	SA	Turkish
Janse et al. (2010)	12.9	19	147	SA	Dutch
Portnoi et al. (2006)	8.8	8	90	PA, SA	French
Zhang et al. (2003)	12.5	13	104	POI	Chinese (Chongqing)
Devi and Benn (1999)	13.3	4	30	SA	American
Davison et al. (1998)	2.5	2	79	PA, SA FSH>20 IU/I	English
Castillo et al. (1992)	32.0	15	47	POI	Chilean
Rebar and Connolly (1990)	25.4	16	63	PA, SA	American

Chromosomal 'abnormalities' means visible structural changes in karyotype that are sufficiently large to cause clinical abnormalities. Variants (e.g. prominent satellites) are not included. CA, chromosomal abnormalities; PA, primary amenorrhea; POI, primary ovarian insufficiency; SA, secondary amenorrhea; EM, early menopause.

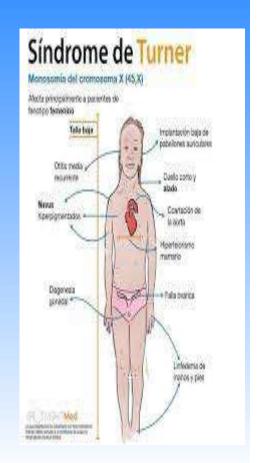
Genetics of primary ovarian insufficiency: new developments and opportunities. Yingying Qin, Xue Jiao, Joe Leigh Simpson, and Zi-Jiang Chen. Human Reproduction Update, Vol.21, No.6 pp. 787–808, 2015


^aIncluding 2 46,XY gonadal dysgenesis (Swyer syndrome).

¿QUÉ ENTIENDO POR CAUSA GENÉTICA?

Mendoza N, Juliá MD, Galliano D, et al. Spanish consensus on premature menopause. Maturitas 2015; 80: 220-25

	Estimated frequency in PO
Turner's syndrome and related defects	4-596
Fragile X syndrome (FMR1 premutation)	3-15%
CLANIA disruption (translesstics)	A first on many man
BMP15 variants	1.5-1296
PGRIMC1 variants	1.5%
Autosomal defects	
Complex diseases	Rare
Galactosemia (GALT)	
BPES (FOXL2)	
APECED (AIRE)	
Mitochondrial diseases (POLG)	
Demirhan syndrome (BMPR1B)	
PHP1a (GNAS)	
Ovarioleucodystrophy (EIF2B)	
Ataxia telangiectasia (ATM)	
Perrault syndrome (HSD17B4, HARS2, CLPP, LARS2,	
C10ORF2)	
Premature aging syndromes:	
Bloom syndrome (BLM)	
Werner syndrome (WRN)	
GAPO disease (ANTXR1) solated disease	
FSH/LH resistance (FSHR and LHCGR)	0-1%
INHA variants	0-176
GDF9 variants	1.4%
FOXL2 variants	Rare
FOXO3 variants	2.2%
NOBOX variants	0-6%
FIGLA variants	1-296
NRSA1 variants	1.6%
LHX8 variants	Rare
DNA replication/melosis and DNA repair genes variants	Unknown
(DMC1, MSH4, MSH5, SPO11, STAG3, SMC1B, REC8,	CHIRITOWN
POF1B. HFM1, MCM8, MCM9, SYCE1, PSMC3IP, NUP107.	
FANCA, FANCC, FANCG)	

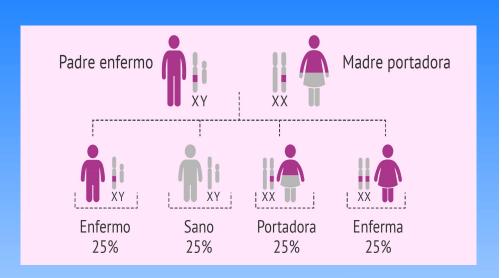


ANOMALÍAS CROMOSÓMICAS DEL X

SÍNDROME DE TURNER

- Ocurre en 1 de cada 2500 nacimientos e involucra la pérdida total o parcial de un cromosoma X (delecciones, translocaciones, inversiones, isocromosomas y, algunas veces, mosaicisimos)
- Estas mujeres suelen nacer con un número normal de folículos primordiales que sufren una atresia acelerada. Tienen una dotación folicular normal hasta el tercer mes de vida fetal, pero la atresia a partir de este momento reduce a un 10% las que consiguen alcanzar la menarquia
- ❖ Las mujeres con un patrón de mosaico en X tienen más probabilidades de presentarse en períodos de tiempo variables después de la menarquia. Hasta un 12%-40% de los mosaicismos 45X/46XX y 45X/47XXX presentan menstruaciones durante varios años hasta que se produce el fallo ovárico.


TRISOMÍA X


El primer caso de IOP con trisomía XXX fue publicado por Jacobs en 1959.

Su escasa prevalencia (1/1000 mujeres) es un impedimento para conocer la frecuencia de su asociación con IOP, esta se estima que podría ser hasta 40 veces superior

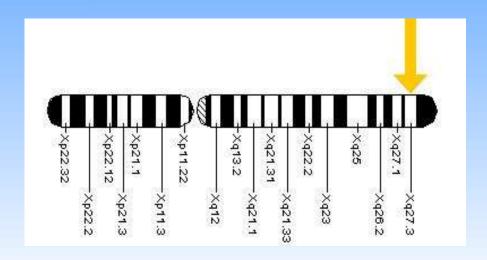
Aproximadamente sólo se diagnostican el 10 % de los casos.

ANOMALÍAS GENÉTICAS LIGADAS CROMOSÓMICAS DELX

GENES CANDIDATOS PARA IOP

ESTUDIOS GENÉTICOS EN HUMANOS

LOCALIZADOS EN EL CROMOSOMA X


- Basic helix-loop-helix protein (BHLHB9)
- Bone morphogenetic protein 15 (BMP15)
- Homologue of the Drosophila dachshund gene (DACH2)
- Second human homologue of the Drosophila diaphanous gene (DIAPH2)
- Fragile X mental retardation syndrome (FMR1)
- X-linked mental retardation, associated with fragile site FRAXE (FMR2)
- Premature ovarian failure 1B (POF1B)
- X-inactivation-specifi c transcript (XIST)
- X-prolyl aminopeptidase 2 (XPNPEP2)

Juliá MD, Díaz B, Fontes J, Galliano D, Gallo JL, García A, Llaneza P, Munnamy M, Sosa M, Roca B, Tomás J, Guinot M, Mendoza N, Pellicer A, Sánchez Borrego R. Menopausia Precoz. MenoGuía AEEM.Primera edición: Mayo 2014

SÍNDROME X FRAGIL

Una premutación en el gen I del retraso mental del X frágil (FMR-I) se presenta en 1 de cada 4000 hombres y en mujeres 1 de 800

Afecta las copias de la repetición trinucleotide CGG en este gen en el área 5 'del cromosoma X23. El hallazgo normal es de 5 a 45 repeticiones. El síndrome completo de discapacidad mental y autismo ocurre en hombres con 200 repeticiones.

SÍNDROME X FRAGIL

En la región 5' del gen FMR1 existe un triplete de nucleótidos (CGG) que se repite entre 6 y 55 veces. Cuando se superan las 200 repeticiones se considera mutación, y es cuando se asocia a retraso mental, y cuando oscila entre 55 y 200 repeticiones se habla de premutación.

Es precisamente en los casos de premutación donde se registra hasta un 25% de IOP y de menopausias precoces (aunque no existe una relación lineal entre el número de repeticiones del triplete CGG y el riesgo de IOP).

Se recomienda el despistaje genético que incluya a los miembros de la familia para prevenir la discapacidad mental grave en la descendencia masculina, así como para las mujeres afectadas de la familia que podrían considerar el almacenamiento de óvulos o la planificación del embarazo.

Repeticiones CGG	Nivel de mutación
5-44	Normal
45-55	Zona gris o intermedia
55-200	Premutación
> 200	Afectado por la mutación

ACOG committee opinion. No. 338: Screening for fragile X syndrome. Obstet Gynecol2006a;6:1483 – 1485

Síndrome X Frágil

- El Colegio Americano de Obstetricia y Ginecología (ACOG) aconseja la determinación sistemática de FMR1 para despistaje de X frágil en todos los casos de antecedentes familiares de IOP, retraso mental inexplicable o demencia, y la recomienda en mujeres con FSH elevada sin causa conocida antes de los 40 años (IOO) con objeto de realizar consejo genético y limitar la transmisión del Síndrome X frágil a las futuras generaciones.
- En los casos de IOP familiar, aproximadamente el 14% de las pacientes tienen una permutación en el gen FMR

GEN BMP15

Bone morphogenic protein 15 gene

UNIVERSIDAD DE GRANADA

ESTUDIO MULTILOCUS DENTRO DE LA RUTA ESTROGÉNICA Y SU RELACIÓN CON LA OSTEOPOROSIS DE CADERA EN MUJERES POSTMENOPÁUSICAS

> JESÚS CARLOS PRESA LORITE 2010

Tabla II. Lista de genes y marcadores seleccionados para los diferentes estudios.

Gen	Nombre Completo	Localización Cromosómica	Locus	ОМІМ	Marcador	rs
FSHR	Follicle Stimulating Hormone Receptor	2p16.3	2492	136435	S680N	6166
CYP19A1	Cytochrome P450, Family 19, Subfamily A, Polypeptide 1	15q21	1588	107910	IVS4 3'UTR	11575899 10046
ESR1	Estrogen Receptor 1	6q25.1	2099	133430	Pvull	2234693
ESR2	Estrogen Receptor 2	14q23.2	2100	601663	*39A>G	4986938
NRIP1	Nuclear Receptor Interacting Protein 1	21q11.2	8204	602490	G75G	2229741
BMP15	Bone Morphogenetic Protein 15	Xp11.2	9210	300247	-673C>T -9C>G N103S IVS1+905A>G	- 3810682 - 3897937

GEN BMP15

- ☐ Di Pasquale publicó la primera mutación del BMP15 en dos hermanas afectas de amenorrea primaria.
- Este gen se localiza en el Xp11.2 situado en la región crítica de IOP, se expresa en el ovocito durante la foliculogénesis y codifica proteínas específicas tanto para este proceso, como para el crecimiento de la granulosa hasta el estadio de dependencia de la FSH.

□ Se asocia a IOP no sindrómico por un reclutamiento acelerado de folículos primordiales y una depleción precoz folicular en los primeros años de la vida.

primary folliele
 growing

egg cell

follicular cells

TIME

bateum

5. empty follicle

follicular fluid

manure follicle ovulation

GEN BMP15

Gene	Location	Cases (N)	Controls (N)	Ethnicity	MR*	Sequence variation	Amino acid change	FC	Mechanism	Reference
BMP15	Xp11.2	50	214	Caucasian North Africa Asia	2 (4.0%)	c.242A > G c.595G > A	p.H81R p.G199R			Tiobia et al. (2010)
		100	100	Chinese	1 (1,0%)	c.985C>T	p.R329C			Wang et al. (2010b)
		300	216	Caucasian	12 (4.0%)	c.I3A>C	p.SSR.	Yes	Slightly affects transactivation of BRE-luc in COV434 granulosa cells	Rossetti et al. (2009)
						c.202C>T c.413G>A	p.R68W p.R.I38H		Markedly reduces mature protein production and affects transactivation of BRE-luc in COV434	
						c.443T>C	p.L148P		granulosa cells	
						c.538G>A	p.A180T		No effect on protein production or transactivation	
		20	93	Germany		None				Ledig et al. (2008)
		92	76	Chinese		None				Zhang et al. (2007)
		203	54	Caucasian	3 (1.5%)	C443T>C	p.L148P			Laissue et al. (2006)
				African Asian		c.538G>A	p.A180T			
						c.468G > A	Sense			
						c.831T>C	Sense			
						c852C>T	Sense			
		133	197	Indian	14 (10.5%)	€181C>T	p.R61W			Dixit et al. (2006c) an
						c.182G>A	p.R61E			Inagaki and Shimasaki
						c.226C>T	p.R76C	Yes	Decreased mature protein production, weaker Smad1/5/8 phosphorylation in COV434 cells and decreased granulosa cell proliferation	(2010)
						c.227G>A	p.R76H			
						c.538G > A	p.A180T			
						c.538G>T/	p.A180F/5+V			
						c.539C>T				
						c.588T > A	p.N196K			
						c.617G>A	p.R206H	Yes	Decreased mature protein production, weaker Smad1/5/8 phosphorylation in COV434 cells and decreased granulosa cell proliferation	
						c.631C>T	p.E211X		and seed cases granted that product about	
						c.661T>C	p.W221R			
						c.727A>G	p.L243G			
						c381A>G	Sense			
						c.*40dupG	3'UTR			
		166	181	Caucasian	7 (4.2%)	c.202C>T	p.R68W			Di Pasquale et al. (200
						c.538G>A	p.A180T			2006)
						c704A>G	p.Y235C	Yes	Diminished GC proliferation with a dominant negative effect	
		38	51	New Zealand		None			-conservation (see 2000)	Chand et al. (2006)
		15	3	Japanese		None				Takebayashi et of. (2000)

Genetics of primary ovarian insufficiency: new developments and opportunities. Yingying Qin, Xue Jiao, Joe Leigh Simpson, and Zi-Jiang Chen. Human Reproduction Update, Vol.21, No.6 pp. 787–808, 2015

ALTERACIONES GENÉTICAS AUTOSÓMICAS

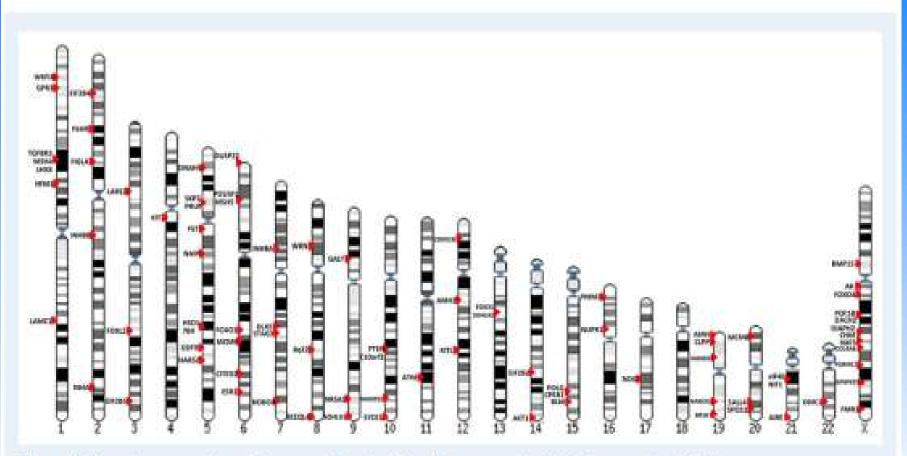


Figure 1 Schematic representation of chromosomal location of plausible genes associated with primary ovarian insufficiency.

Table III Candidate ge	enes responsible for Mendelian disorders that manifest POI.
------------------------	---

Gene	Location	Mendelian syndrome	Somatic features	Reference
FM				al. (2010
			пехионсу.	
FOXL2	3q23	Blepharophimosis-ptosis-epicanthus BPE type I syndrome, BPES I	BPES type I is a complex eyelid malformation associated with POI. The major features of the eyelid malformation involve (i) narrowed horizontal aperture of the eyelids (blepharophimosis), (ii) drooping of the upper eyelid (ptosis), (iii) the presence of a fold of skin arising from the lower eyelid that runs inward and upward (epicanthus inversus), and (iv) lateral displacement of the inner canthi (telecanthus).	Baraitser (1988)
GALT	9p13	Galactosemia	Cataracts, speech defects, poor growth, poor intellectual function, neurologic deficits (predominantly extrapyramidal findings with ataxia).	Schadewaldt et al. (2004)
AIRE	21q22.3	Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome, APECED	Candidiasis, Addison's disease, hypoparathyroidism, type I diabetes, alopecia, vitilgo, ectodermal dystrophy, celiac disease and other intestinal dysfunctions, chronic atrophic gastritis, chronic active hepatitis, autoimmune thyroid disorders, pernicious anemia.	Fierabracci et al. (2012)
EJF2B	EIF2B2 -14q24.3; EIF2B4- 2p23.3; EIF2B5- 3q27.1	Central nervous system leukodystrophy and ovarian failure, ovarioleukodystrophy	Neurological disorder characterized by involvement of the white matter of the central nervous system. When Leukodystrophies associated with premature ovarian failure referred to as ovarioleukodystrophy.	Mathis et al. (2008)
POLG	15q25	Progressive external ophthalmoplegia, PEO	Manifestations range from involvement limited to the eyelids and extraocular muscles.	Graziewicz et al. (2007)
NOG	17q22	Proximal symphalangism, SYM1	Ankylosis of the proximalinterphalangeal joints.	Kosaki et al. (2004)
PMM2	16p13	PMM2-CDG CDG-I (a previously known as congenital disorder of glycosylation type Ia)	Cerebellar dysfunction (ataxia, dysarthria, dysmetria), non-progressive cognitive impairment, stroke-like episodes, peripheral neuropathy with or without muscle wasting, absent puberty in females, small testes in males, retinitis pigmentosa, progressive scoliosis with truncal shortening, joint contractures, and premature aging	Sparks and Krasnewich (2005)
HSD 1784 HARS2 CLPP LARS2 C10orf2	5q21 5q31.3 19p13.3 3p21.3 10q24	Perrault syndrome, PS	Sensorineural deafness in both males and females, and neurological manifestations in some patients.	jenkinson et al. (2013), Morino et al. (2014) Pierce et al. (2011), Pierce et al. (2013) and Pierce et al. (2010)
BLM	15q26.1	Bloom syndrome	Chromosomal breakage leading to early onset of aging, short stature and elevated rates of most cancers.	Elis and German (1996)
ATM	11q22-q23	Ataxia telangiectasia, A-T	Progressive cerebellar degeneration, telangiectasias, immunodeficiency, recurrent infections, insulin-resistant diabetes, premature aging, radiosensitivity, and high risk for epithelial cancers in surviving adults.	Gatti et of. (1991) and Su and Swift (2000)
WRN	8p12	Werner syndrome	Premature aging of the skin, vasculature, and bone and elevated rates of certain cancers, particularly sarcomas.	Epstein et al. (1966)
RECQL4	8q24.3	Rothmund—Thomson syndrome, RTS	Cutaneous rash, sparse hair, small stature, skeletal and dental abnormalities, cataracts, premature aging, and an increased risk for cancer, especially malignancies originating from bone and skin tissue.	Wang et al. (2001)

FMR1: Fragile X mental retardation 1; FOXL2; fortifieed box L2; GALT: galactote 1-phosphate unidyl transferase; AIRE: autoimmune regulator; EF2B: sukaryotic translation initiation factor; POLG: polymerase (DNA directed), gamma; NOG: noggin; PPM2: Phosphomannomutase 2; HSD 17B4: Hydroxysteroid (17-beta) deflydrogenase 4; HARS2: Histodyl-tRNA synthetase 2, mitochondrial; CLPP: caseinolytic mitochondrial matrix peptidese proteolytic subunit; LARS2: leucyl-tRNA synthetase 2, mitochondrial; CLPP: caseinolytic mitochondrial matrix peptidese proteolytic subunit; LARS2: leucyl-tRNA synthetase 2, mitochondrial; CLPP: caseinolytic mitochondrial matrix peptidese proteolytic subunit; LARS2: leucyl-tRNA synthetase 2, mitochondrial; CLPP: caseinolytic mitochondrial matrix peptidese proteolytic subunit; LARS2: leucyl-tRNA synthetase 2, mitochondrial; CLPP: caseinolytic mitochondrial matrix peptidese proteolytic subunit; LARS2: leucyl-tRNA synthetase 2, mitochondrial; CLPP: caseinolytic mitochondrial matrix peptidese proteolytic subunit; LARS2: leucyl-tRNA synthetase 2, mitochondrial; CLPP: caseinolytic mitochondrial matrix peptidese proteolytic subunit; LARS2: leucyl-tRNA synthetase 2, mitochondrial; CLPP: caseinolytic mitochondrial matrix peptidese proteolytic subunit; LARS2: leucyl-tRNA synthetase 2, mitochondrial; CLPP: caseinolytic mitochondrial matrix peptidese proteolytic subunit; LARS2: leucyl-tRNA synthetase 2, mitochondrial; CLPP: caseinolytic mitochondrial matrix peptidese proteolytic subunit; LARS2: leucyl-tRNA synthetase 2, mitochondrial; CLPP: caseinolytic mitochondrial matrix peptidese proteolytic subunit; LARS2: leucyl-tRNA synthetase 2, mitochondrial matrix peptidese 2, mitochondrial matrix peptidese 2, mitochondrial matrix peptidese 3, mitoch

¿CUÁLES DEBERÍAMOS PLANTEARNOS?

Cariotipo, cromosoma X, test mutaciones autosómicas (no de rutina)

Among the genes associated with POI, only a few (such as FMR1 premutation, BMP15, GDF9, and FSHR) have been incorporated as diagnostic biomarkers.

Moreover, the recent papers on the field agree on the possibility of extending genetic investigations to also include genes like BMP15, FIGLA, NOBOX and NR5A1.

Las mutaciones más frecuentes se encuentran en genes involucrados en la función de las hormonas sexuales (CYP17A1, CYP19, receptores de FSH o LH, etc), en la foliculogénesis (GDF9), o en la atresia folicular (FOXL2, NOBOX, FIGLA). Estas mutaciones no son frecuentes en la práctica clínica, pero si se hallan son importantes en el consejo familiar

Rossetti R., Ferrari I., Bonomi M., Persani L. Genetics of primary ovarian insufficiency. Clin Genet 2017: 91: 183-198

Genetics of primary ovarian insufficiency: new developments and opportunities. Yingying Qin, Xue Jiao, Joe Leigh Simpson, and Zi-Jiang Chen. Human Reproduction Update, Vol.21, No.6 pp. 787–808, 2015

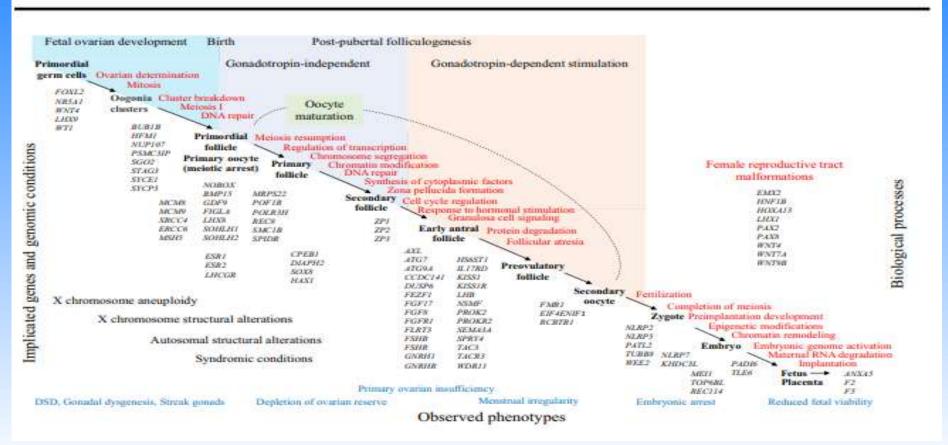
A LA INVERSA

Table 3. Particular health conditions of POI patients associated with variations in the

Particular phenotypes	Genetic associations
Hea <mark>ring d</mark> efects (Perrault syndrome)	HSD17B4, HARS2, CLPP, LARS2, C10ORF2
Progressive external aphthalmoplegia and tramer (parkinsonism)	POLG
Blepharophymosis, epicanthus inversus	FOXL2
Resistance to multiple hormones (PTH, GHRH, LH/FSH, TSH), short stature, short IV metacarpus, overweight	GNAS
Candidiasis, Addison disease	AIRE
Hypothyroidism	AIRE (mutations in the PHD1 domain), MCM8
X-linked mental retardation or tremor-ataxia in relatives	FMR1 premutation
LH elevation higher than FSH, large ovarian follicles present, anovulation	LHCGR
Variable presence of small pre-antral folicles	FSHR
DSD (Swyer syndrome) in male relatives	NR5A1
Galactosemia	GALT
Vanishing white matter (VWM) disease with progressive neurological deterioration	EIF2B
Ataxia telangiectasia	ATM
Dehmiran syndrome	BMPR1
Short stature (cardiac malformations, lymphedema)	Turner mosaicism
Recurrent spontaneous dizygotic twinning	GDF9
46,XX ovarian dysgenesis	BMP15, MCM9, FSHR, NUP107, PSMC3IP, ATM
Premature aging syndromes (Bloom syndrome, Werner syndrome, GAPO disease)	BLM, WRN, ANTXR1

DSD, disorders of sex development; FSH, folicle-stimulating hormone; GHRH, growth-hormone-releasing hormone; LH, luteinizing hormone; POI, primary ovarian insufficiency; PTH, perathyroid hormone; TSH, thyroid-stimulating hormone.

SÍNDROMES HEREDITARIOS


Algunos síndromes hereditarios raros se asocian ocasionalmente a IOP

- Síndrome Poliglandular AutoinmuneTipo I
- Disgenesia gonadal
- Síndrome de Perrault
- > Ataxia Telangiectasia

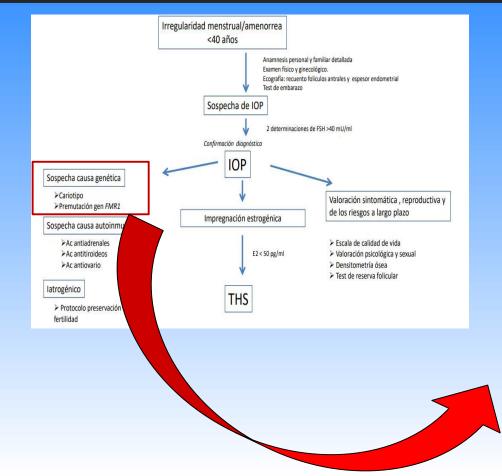
En la mayoría de los casos se presentan como amenorrea primaria, aunque la presentación puede ser tardía en los fenotipos leves

Maclaran K, Panay N. Current concepts in premature ovarian insufficiency. Women's Health 11(2):169–182, 2015

REPRODUCCIÓN Y GENÉTICA

S.A. Yatsenko and A. Rajkovic, Biology of Reproduction, 2019, 101(3),

ASESORAMIENTO GENÉTICO


LA IMPORTANCIA FUTURA

La estimación secuencial de la hormona antimülleriana combinada con enfoques genéticos modernos puede proporcionar un modelo predictivo útil en el futuro.

La genética de la IOP ilustra el considerable progreso que se ha logrado e identifica otras áreas de investigación que seguramente harán que el término "idiopático" quede obsoleto en lo que respecta a la etiología de la IOP.

Nick Panay (2021) Progress in understanding and management of premature ovarian insufficiency, Climacteric, 24:5, 423-424,

ALGORITMO DIAGNÓSTICO DE IOP

Management of women with premature ovarian insufficiency

Guideline of the European Society of Human Reproduction and Embryology

POI Guideline Development Group

December 20

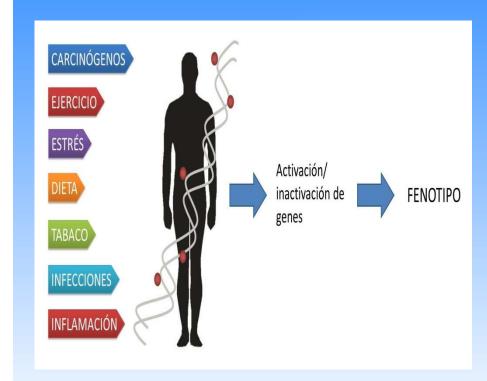
Recommendations

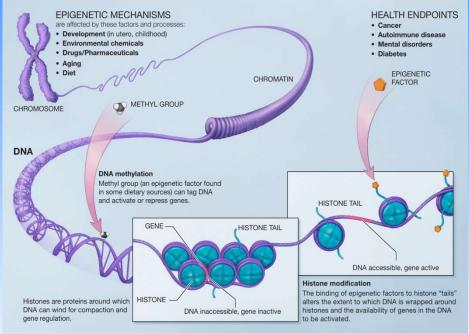
Chromosomal analysis should be performed in all women with nonlatrogenic Premature Ovarian Insufficiency.

C

Fragile-X premutation testing is indicated in POI women.

B

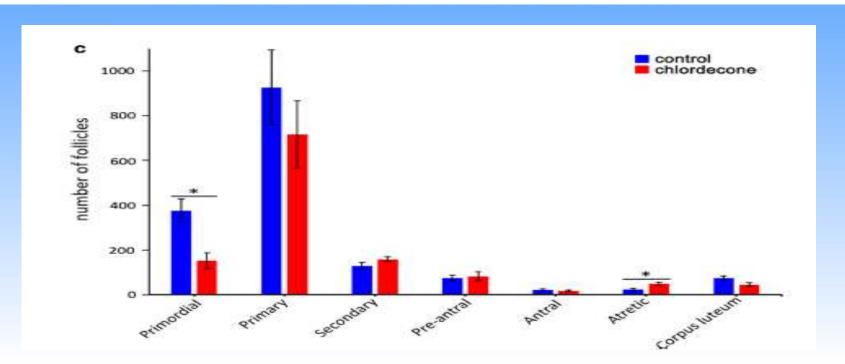

The implications of the fragile-X premutation should be discussed before the test is performed.


GPP

Autosomal genetic testing is not at present indicated in women with POI, unless there is evidence suggesting a specific mutation (e.g. BPES).

GPP

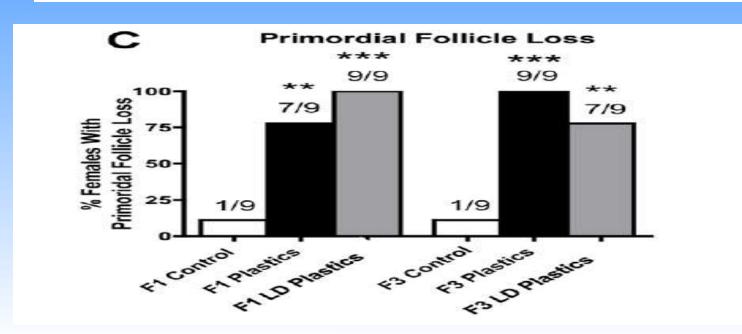
EPIGENÉTICA - IOP



RESEARCH

Open Access

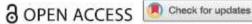
Ovarian dysfunction following prenatal exposure to an insecticide, chlordecone, associates with altered epigenetic features



Plastics Derived Endocrine Disruptors (BPA, DEHP and DBP) Induce Epigenetic Transgenerational Inheritance of Obesity, Reproductive Disease and Sperm Epimutations

Mohan Manikkam, Rebecca Tracey, Carlos Guerrero-Bosagna, Michael K. Skinner*

Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America


January 2013 | Volume 8 | Issue 1 | e55387. Transgenerational Disease Inheritance

EPIGENETICS 2018, VOL. 13, NO. 8, 875-895 https://doi.org/10.1080/15592294.2018.1521223

RESEARCH PAPER

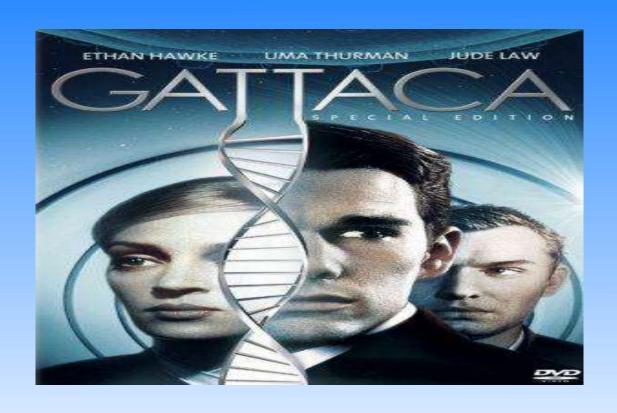
Environmental toxicant induced epigenetic transgenerational inheritance of ovarian pathology and granulosa cell epigenome and transcriptome alterations: ancestral origins of polycystic ovarian syndrome and primary ovarian insufiency

Eric Nilsson 6 , Rachel Klukovich 6 , Ingrid Sadler-Riggleman , Daniel Beck , Yeming Xie 6 , Wei Yan , and Michael K. Skinner^a

These transgenerational epigenetic changes appear to contribute to the dysregulation of the ovary and disease susceptibility that can occur in later life.

Observations suggest that ancestral exposure to toxicants is a risk factor that must be considered in the molecular etiology of ovarian disease.

BIBLIOGRAFÍA


- 1.- Panay N, Anderson RA, Nappi RE, et al. Premature ovarian insufficiency: An International Menopause Society White Paper. Climacteric. 020;23(5):426–446.
- 2.- S.A. Yatsenko and A. Rajkovic, Genetics of human female infertility. Biology of Reproduction, 2019, 101(3), 549–566
- 3.- Rossetti R., Ferrari I., Bonomi M., Persani L. Genetics of primary ovarian insufficiency. Clin Genet 2017: 91: 183–198
- 4.- Sociedad Española de Ginecología y Obstetricia. Estudio de la insuficiencia ovárica primaria e insuficiencia ovárica oculta (2017). Prog Obstet Ginecol. 2017;60(6):600-611
- 5.- Juliá MD, Díaz B, Fontes J, Galliano D, Gallo JL, García A, Llaneza P, Munnamy M, Sosa M, Roca B, Tomás J, Guinot M, Mendoza N, Pellicer A, Sánchez Borrego R. Menopausia Precoz. MenoGuía AEEM.Primera edición: Mayo 2014. Aureagràfic, s.l. Barcelona 2014. ISBN: 978-84-940319-9-1.
- 6.- Management of women with premature ovarian insufficiency. POI Guideline Development Group . Guideline of the European Society of Human Reproduction and Embryology

CUENTA TU EXPERIENCIA CLÍNICA CON GENÉTICA Y LA IOP

SÁBADO 23 OCTUBRE A LAS 10:00

JESÚS PRESA, E-mail: jpresalorite@hotmail.com

GRACIAS POR SU ATENCIÓN