
Effect of *coriolus versicolor*-based vaginal gel on clearance of human papillomavirus and cervical dysplasia - a scoping review

Received: 2 June 2025

Accepted: 1 December 2025

Published online: 08 January 2026

Cite this article as: Højen I.B., Kristensen M.K., Bertelsen V.M. *et al.* Effect of *coriolus versicolor*-based vaginal gel on clearance of human papillomavirus and cervical dysplasia - a scoping review. *BMC Women's Health* (2025). <https://doi.org/10.1186/s12905-025-04206-z>

Ida Birkbak Højen, Mathilde Kristine Kristensen, Vibe Munk Bertelsen, Mette Tranberg, Lone Kjeld Petersen, Berit Andersen & Pinar Bor

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

Effect of *Coriolus Versicolor*-based Vaginal Gel on Clearance of Human Papillomavirus and Cervical Dysplasia - A scoping review

1 **Ida Birkbak Højén¹, Mathilde Kristine Kristensen¹, Vibe
2 Bertelsen^{2,3}, Mette Tranberg^{3,5,6}, Lone Kjeld Petersen⁴, Berit
3 Andersen³, Pinar Bor^{1,5}**

4

5 **¹ Department of Obstetrics and Gynecology, Aarhus University
6 Hospital, Aarhus, Denmark**

7 **² Department of Obstetrics and Gynecology, Randers Regional
8 Hospital, Randers, Denmark**

9 **³ University Research Clinic for Cancer Screening, Department of
10 Public Health Programs, Randers Regional Hospital, Randers,
11 Denmark**

12 **⁴ Department of Obstetrics and Gynecology, Odense University
13 Hospital, Odense, Denmark**

14 **⁵ Department of Clinical Medicine, Aarhus University, Aarhus,
15 Denmark**

16 **⁶ Department of Pathology, Randers Regional Hospital, Randers,
17 Denmark**

18

19 **Corresponding Author**

20 **Navn:** Ida Birkbak Højén

21 **Adresse:** Bagterpvej 235, 9800 Hjørring, Danmark

22 **Mail:** idabirkbak@hotmail.com

23 **Tlf.:** 61548106

24 **Abstract**

25 **Background:** Cervical cancer, primarily caused by sexually transmitted high-
26 risk Human Papillomavirus (HPV) infections, remains a major global health
27 challenge. Despite significant advances in HPV vaccination and cervical
28 cancer screening strategies, effective and non-invasive treatment options for
29 HPV infections and cervical dysplasia. are still lacking. Current management
30 strategies of cervical dysplasia vary from the “wait and see” strategy to
31 surgical interventions. This scoping review aimed to map the existing
32 evidence on the efficacy and safety of *Coriolus Versicolor*-based vaginal gel as
33 a novel and effective non-invasive treatment of HPV infection and mild
34 cervical dysplasia.

35 **Methods:** A comprehensive scoping review was performed using systematic
36 searches in PubMed, Embase, EBSCOhost, Ovid, CNKI and SciELOdatabases.
37 The literature search covered publications up to August 2025. Two reviewers
38 independently screened possible studies, following the PRISMA guidelines for
39 scoping reviews. Only human experimental randomized controlled trial (RCT)
40 and observational cohort studies published in English, Norwegian, Swedish or
41 Danish were considered.

42 **Results:** A total of 127 articles were screened, and five studies met the inclusion
43 criteria: one RCT (n=91), one sub-analysis of this RCT (n=41), and three cohort
44 studies (n=183, 192, 21). Treatment with CV-based vaginal gel was associated
45 with improved HPV clearance and regression of cervical dysplastic lesions, with
46 regression rates of 76.1-84.9% in treated women compared 40.8-64.5% in

47 untreated controls. Positive effects were also observed in women with hrHPV
48 and in postmenopausal women. No serious adverse events were reported.

49 **Conclusion:** This scoping review suggests that CV based vaginal gel shows
50 promising but preliminary efficacy and safety in promoting regression of
51 cervical dysplastic lesions and HPV clearance. Larger, long-term multinational
52 RCT studies with standardized outcomes definitions are needed to confirm
53 these preliminary findings and to establish the therapeutic role of the CV
54 based vaginal gel in clinical practice.

55 **Keywords:** HPV, cervical dysplasia, *Coriolus Versicolor*-based vaginal gel,
56 cervical cancer

57 **Introduction**

58 Cervical cancer is the fourth most common cause of cancers worldwide, with
59 an estimated 600000 new cases and 340000 deaths worldwide (1). Almost all
60 cancer cases are caused by a pre-existing infection with HPV which is a
61 widespread sexually transmitted virus. It is estimated that approximately 80%
62 of sexually active people experience an HPV infection at some point in their
63 life and some may even be infected in more than one occasion (2, 3).

64 Currently, more than 200 types of HPV have been identified (4), with certain
65 genotypes of HPV showing an increased risk of persistence and being
66 classified as high-risk HPV (hrHPV), especially HPV-16 and HPV-18 are known
67 as oncogenic genotypes leading to premalignant cervical dysplastic lesions
68 accounting for approximately 70% of all cervical cancer cases (1, 5-7). Some
69 HPV infections are transient and cleared or suppressed by cell-mediated
70 immunity and about 70% will regress spontaneously within one year and 90%
71 after two years (8, 9). In 10-20% of the infected women, the infection remain
72 persistent (10) and may progress to cervical intraepithelial neoplasia (CIN),
73 potentially advancing to cervical cancer if left untreated (11). The severity of
74 the cervical dysplastic lesions is classified either by using the CIN
75 classification or WHO terminology. In the CIN classification CIN1 indicates
76 mild dysplasia, CIN2 represents moderate dysplasia and CIN3 represents
77 severe dysplasia. According to WHO terminology, CIN1 includes Atypical
78 Squamous Cells of Undetermined Significance (ASCUS) and Low-Grade
79 Squamous Intraepithelial Lesion (LSIL), while CIN2 and CIN3 include High-
80 grade Squamous Intraepithelial Lesion (HSIL). Studies have estimated that
81 without treatment 16% of CIN2 lesions will progress to CIN3 or worse and

82 12% of CIN3 lesions will progress to cervical cancer (12, 13). In
83 immunocompetent women progression to invasive cervical cancer typically
84 occurs 10 to 20 years after primary infection (14). Studies (6) have shown that
85 some risk-factors such as smoking, multiparity, long-term use of
86 contraceptives and immunosuppression can double or triple the risk of
87 precancer among women infected with an oncogenic HPV. Risk-factors for
88 persistent infection and cervical cancer, other than the HPV subtype, have not
89 been identified, and it is unknown why or when the infections are cleared, or
90 when it remains persistent (6, 15).

91 Despite progress due to HPV vaccination, a global burden of HPV infection
92 and cervical dysplasia persists. In recent decades considerable efforts have
93 focused on developing effective screening strategies, HPV-detecting tools, and
94 implementing HPV vaccines worldwide to prevent HPV and HPV induced
95 cervical cancers (6, 16). However, there is still a gap in the discovery of
96 effective and less-invasive treatments for cervical HPV infections and
97 consequently cervical dysplasia. Nowadays the conventional treatment of HPV
98 and cervical dysplasia includes wait and see strategy and follow-up after 6-12
99 months dependent on the dysplasia grade. However, for CIN2+ cases a
100 surgical excision of the cervix is considered depending on the woman's desire
101 for fertility. This surgical intervention is combined with risk of pre-term birth,
102 abortion, infection and cervical agglutination (17). CIN2 can also, in some
103 cases, be treated with the wait and see approach due to a high rate (50%) of
104 spontaneous regression (12). This is combined with a long follow up period
105 including HPV testing, cytology, and colposcopy every 6 months. In addition

106 the risk of developing invasive cancer after treatment of CIN2 or CIN3 with
107 cervical excision is still five times higher when compared to the general
108 population, also indicating a long follow-up period for these women (18). In
109 addition, studies indicate that after clearance of an HPV infection there is still
110 a high risk of re-infection with the same type of HPV. This necessity for
111 repeated screening, long period of follow-up and the risk of re-infection makes
112 the management and treatment of HPV-infections and cervical dysplasia costly
113 for society. Additionally, studies have also shown that the wait and see
114 approach and the risk of reinfection or progression to severe dysplasia often
115 result in anxiety, distress and lower quality of life in relation to the fear of
116 progression to cervical cancer for the woman (19, 20). The absence of an
117 effective treatment, the potential consequences for infected women, and the
118 risk of invasive cervical cancer without intervention highlight the urgent
119 necessity of finding an alternative treatment. This alternative treatment could
120 not only treat HPV infections but also enhance the quality of life for the
121 affected women and reduce the long-term risk of developing cancer.

122 Recent studies have introduced a new approach using a multi-ingredient
123 vaginal gel containing the medical mushroom *Coriolus Versicolor* (CV). CV has
124 been used medically and approved for over 30 years in China and Japan,
125 although its use in Western countries is relatively unknown (21). Studies have
126 reported that CV possesses many physiological activities, such as promoting
127 immune function and providing antimicrobial, antitumor and anti-
128 inflammatory effects. The polysaccharopeptide found in CV is identified as the
129 major bioactive component with immunomodulatory function (22, 23). By

130 modulating immune response, CV may facilitate the clearance of HPV-infected
131 cells through the activation of natural killer (NK) cells and cytotoxic T
132 lymphocytes, which are essential for recognizing and eliminating viral
133 infections or dysplastic epithelial cells (24). Its mechanisms of action also
134 include inducing apoptosis through increased release of Tumor Necrosis
135 Factor (TNF)- α and regulating cytokines such as Transforming Growth Factor
136 (TGF)- β , which carries both pro- and anti-inflammatory effects (24, 25).

137 Studies have also shown increase in Lactobacilli (*Lactobacillus Crisplantus*)
138 and a decrease in bacteria such as *Gardnerella Vaginalis* following application
139 of CV based vaginal gel (26).

140 The first CV-based vaginal gel, Papilocare®, was launched by ProCare Health
141 in 2016 as a non-prescription medicine (27). Papilocare®, combines CV with
142 additional ingredients that support HPV clearance and regression of cervical
143 dysplastic lesions. It includes moisturizing (Hyaluronic acid), tissue reparation
144 (NEEM, Aloe vera, Centella Asiatica) and microbiota-balancing (BIOECOCIA)
145 properties (28). Recent studies have reported promising results, suggesting
146 that CV-based vaginal gel may be an effective treatment for HPV infection and
147 cervical dysplasia (28-32).

148 The purpose of this scoping review was to assess the current state of research
149 on the efficacy of the CV-based vaginal gel for the clearance of vaginal HPV
150 infection and the repair of cervical dysplastic lesions. This review focuses on
151 exploring evidence that supports the use of CV-based vaginal gel as a new
152 treatment approach.

153 **Method**

154 **Search strategy**

155 Study searches were made on PubMed, Embase, EBSCOhost, Ovid, CNKI and
156 SciELO. The search string was made in PubMed and then translated to
157 additional databases. The search string for PubMed database: ((Vaginal gel)
158 OR ("Vaginal Creams, Foams, and Jellies"[Mesh]) OR (coriolus versicolor gel))
159 AND (((HPV) OR (Human papillomavirus) OR (HPV infection) OR
160 ("Papillomaviridae"[Mesh]) OR (HPV induced cervical lesions)) OR (((Cervical
161 dysplasia) OR (Cervical lesion) OR (cervical epithelization)) OR (Cervical
162 intraepithelial neoplasia)) OR ("Uterine Cervical Dysplasia"[Mesh])). The
163 literature search covered publications up to August 2025 and was supervised
164 by a librarian in the Library of Health Studies at Aarhus University.

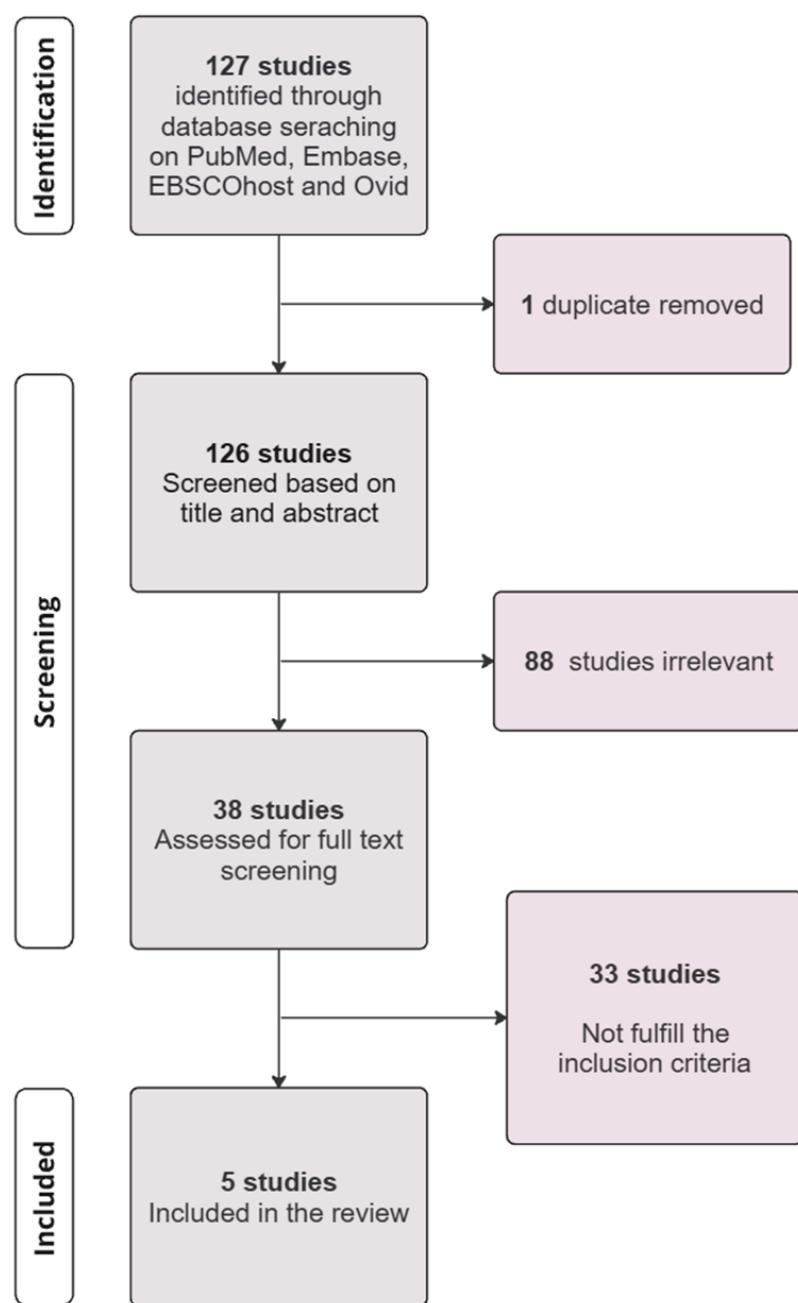
165 **Inclusion and exclusion criteria**

166 Studies regarding the effects of CV-based vaginal treatment on either vaginal
167 HPV infection, cervical lesions, cervical dysplasia or both were included.
168 Articles regarding other types of vaginal gel treatments were excluded. Only
169 human experimental randomized and observational studies written in English,
170 Norwegian, Swedish or Danish were included. There was no restriction on the
171 date of publication.

172 **Screening of articles and data extraction**

173 The screening process was performed according to the PRISMA guidelines (33).
174 Initially, all paper titles and abstracts were independently reviewed by 2
175 authors, and those not meeting the inclusion criteria were excluded. The full

176 texts of the remaining papers were assessed, focusing on various factors
177 including publication year, country, population size, study design, treatment
178 methods, impact of CV-based vaginal gel and duration of follow-up.


179 This is a scoping review with the primary aim of mapping the available
180 literature. Therefore, a decision was made not to conduct a quality assessment
181 of the studies included.

182 **Results**

183 **Study selection**

184 The search yielded a total of 127 articles, 38 of which underwent full text
185 screening, resulting in a total of five articles deemed eligible for this review
186 (*Fig. 1*).

187

188

189 *Figure1. PRISMA flowchart of the study selection process showing the search results, study selection and*
190 *exclusion of studies.*

191 **Study characteristics**192 ***Study design, study population and geography***

193 All studies included in this review were carried out between 2016 and 2021.

194 The study population in the included studies ranged from 21-192 women. The

195 ages of the included women varied from 18-65 years, with median ages

196 ranging from 30.1-41.4 years. Only one study was a randomized controlled

197 trial (RCT) (32). A sub-analysis of this RCT was presented in another article

198 (30). The last three articles were observational cohort studies, of which two

199 were prospective (28, 31) and one was retrospective (29). In the RCT study

200 (32) a total of 91 women participated, and 41 of these women were included

201 in the sub analysis study (30). In the observational studies (28, 29, 31) the

202 study population consisted of 192, 183 and 21 participants, respectively.

203 Altogether, the studies provided information from 487 women, of whom 369

204 women received treatment with a CV-based vaginal gel, and the remaining

205 118 serving as untreated controls. Two studies (28, 30) performed subgroup

206 analyses with a specific focus on examining the effects of the CV-based

207 vaginal gel in women over 40 years old. None of the studies included a

208 subgroup analysis exclusively for women under 40 years old. The inclusion

209 and exclusion criteria for the studies were heterogeneous. In three studies,

210 the included women had either a positive HPV test and/or ASCUS or LSIL (28,

211 30, 32). In contrast, Criscuolo et al. (29) included only women who tested

212 positive for hrHPV and were the only study to include women with HSIL in

213 addition to those with ASCUS and LSIL. The last study by Palcios et al. (31)

214 included only women with normal cytology and an epithelization score

215 between 5 and 1, indicating mild to severe ectopy. In the PALOMA study by
216 Serrano et al. (32) and its sub-analysis (30), women with a history of any HPV
217 vaccination were excluded, whereas vaccinated women were included in the
218 other three studies (28, 29, 31). In all the studies, women who were pregnant,
219 planning to become pregnant or breastfeeding were excluded. All five studies
220 were conducted in European countries, with four taking place in Spain (28,
221 30-32) and one in Italy (29). An overview of the study design, study population
222 and geography for the included studies is presented in Table 1.

223 ***Treatment protocols***

224 In three studies, the treatment regime involved application of CV-based
225 vaginal gel daily for 21 days during the first month. This daily treatment
226 regimen was followed by the application of one cannula of CV-based vaginal
227 gel every other day for the next 5 months, excluding menstruation days,
228 resulting in a total treatment period of 6 months (28, 30, 32). Afterward,
229 patients included in these three studies received a follow-up examination at
230 the gynecological outpatient clinic with cervical cytology, HPV testing and
231 colposcopy (28, 30, 32). The study by Cortés et al. (28) was the only study to
232 extend treatment by an additional 6 months for patients with persistent HPV
233 infections, cytology abnormalities, and/or colposcopy due to insufficient initial
234 data. In contrast, Criscuolo et al. (29) limited the treatment strategy to just 3
235 months, consisting of one month of daily treatment, followed by 2 months with
236 treatment every other day. The follow-up was performed after 6 months. The
237 duration of treatment in the smaller prospective study (n=21) by Palacios et
238 al. (31) was limited to only 12 days with daily use of CV-based vaginal gel, and

239 with follow-up by colposcopy at day 12. In the study by Serrano et al. (32)
240 women were randomized into two treatment groups: Group A received CV-
241 based vaginal gel daily for 21 days, followed by alternate-day treatment for 5
242 months as mentioned above. Group B received the gel daily for an initial
243 period of 3 months before switching to the alternate-day schedule for the
244 remaining 3 months. Cervical cytology follow-ups were conducted after 3 and
245 6 months, whereas HPV testing was only performed at the 6-month visit. For
246 the end-point analysis Group A and B were combined into a single treatment
247 group and compared with untreated controls. The study treatment protocols,
248 follow-up periods and end-points analysis of the included articles are
249 summarized in Tabel 1.

250 **Impact of CV-based vaginal gel**

251 ***Repair of cervical dysplastic lesions***

252 Three of the studies (28, 29, 32) demonstrated promising results for the CV-
253 based vaginal gel, showing significant positive effects in repairing cervical
254 dysplastic lesions. Repair of cervical dysplastic lesions was defined as
255 normalization or reduction in cervical cytology findings along with concordant
256 colposcopy images. The PALOMA study by Serrano et al. (32) reported a
257 statistically significant improvement in the repair of cervical dysplastic
258 lesions, with 84.9% of women treated with CV-based vaginal gel for 6 months,
259 compared with 64.5% in the untreated control group ($p = 0.031$). Supporting
260 these results, Cortés et al. (28) reported overall repair in 67.0% of the women
261 after 6 months of treatment. Among women who continued treatment for an
262 additional 6 months due to insufficient initial effects, 58.8% showed repair of

263 their cervical dysplastic lesions after a total of 12 months treatment. The
264 study also conducted cervical biopsies from 91 women, corresponding to 48%
265 of the total cohort, where 15 (16.5%) biopsies showed inflammatory HPV, 56
266 (61.5%) showed CIN 1 and 8 (9%) showed CIN2 or CIN3 at baseline. At follow
267 up the study found that 15.4% of the biopsies improved from CIN1 to normal
268 or inflammatory after 6 months of treatment, whereas 76.9% of the biopsies
269 did not show changes in the biopsy result, and 7.2% of the biopsies had
270 worsened from inflammatory to CIN1.

271 The study by Criscuolo et al. (29) focused specifically on the repair of cervical
272 dysplastic lesions among hrHPV positive women. Results showed that 76.1%
273 of the treated hrHPV positive women had improved colposcopy after 3 months
274 of treatment, compared to 40.8% in the control group ($p = 0.0005$).
275 Additionally, 60.9% of the treated women achieved full remission defined as a
276 negative colposcopy result compared to 40.8% in the control group ($p = 0.05$).
277 Subgroup analysis of hrHPV positive women performed by Cortés et al. (28)
278 and Serrano et al. (32) showed repair of cervical dysplastic lesions after
279 treatment with CV-based vaginal gel in 76% and 87.8% of the women,
280 respectively.

281 ***Cervical Reepithelialization***

282 Cervical reepithelialization after treatment with CV-based vaginal gel was
283 evaluated in two of the studies (31, 32). The degree of reepithelialization was
284 evaluated by colposcopy and rated with a 5-point Likert scale, where 5 was no
285 ectopy and 1 was severe ectopy and bleeding. Palacios et al. (31) found that
286 the mean score of re-epithelialization increased from 3.09 at baseline to 4.42

287 after 6 months of treatment, with an overall improvement of epithelization in
288 95.3% of the women. In the larger study by Serrano et al. (32), the
289 reepithelization mean score increased from 4.2 to 4.5 after 6 months in the
290 treatment group, whereas the mean score increased from 3.9 to 4.1 in the
291 untreated control group.

292 ***HPV Clearance***

293 Four studies (28-30, 32) evaluated the impact of CV-based vaginal gel on HPV
294 clearance, which was defined as either a negative HPV test result, the
295 disappearance of all baseline-detected HPV-genotypes or partial clearance
296 with the removal of at least one single HPV genotype. Cortés et al. (28)
297 reported a positive effect of treatment, with HPV clearance rates of 58.7%
298 among patients treated for 6 months and 52.1% among those continuing
299 treatment for 12 months. A subgroup analysis by Cortés et al. (28) further
300 confirmed this positive effect in hrHPV positive women, with a clearance rate
301 of 70.6% in this group. In contrast, Serrano et al. (32) did not find statistically
302 significant results overall, as 59.6% of treated women experienced HPV
303 clearance, versus 41.9% in the untreated group ($p = 0.118$). However, a
304 significant effect was observed in Group B (treatment daily for 3 months
305 followed by alternate-day treatment for another 3 months), with 75.9%
306 achieving HPV clearance compared with 41.9% in the control group ($p =$
307 0.008).

308 Focusing on the clearance of hrHPV, Criscuolo et al. (29) reported that 67.0%
309 of hrHPV positive women treated with CV-based vaginal gel for 3 months
310 exhibited an overall clearance of hrHPV, whereas only 37.2% of the untreated

311 controls ($p < 0.0001$). Similarly, the study by Serrano et al. (32) reported
312 hrHPV clearance with 62.5% in the treated women versus 40.0% in the
313 untreated control group, although this result was not statistically significant.
314 However, statistically significant results were observed in Group B, in which
315 81.8% of the women achieved clearance of hrHPV ($p = 0.004$). An overview of
316 the effects of the CV-based vaginal gel on HPV-induced cervical lesions and
317 HPV clearance is presented in Table 2.

318 ***Women aged ≥ 40 years***

319 Two of the studies (28, 30) evaluated the effect of CV-based vaginal gel among
320 women over 40 years of age, suggested a positive effect of CV-based vaginal
321 gel in women around the postmenopausal age. A subgroup analysis by Cortés
322 et al. (28) found that 82.4% of treated women experienced repair or
323 normalization of their cervical dysplastic lesions. Similarly, the sub-analysis of
324 the PALOMA study (30), reported a high repair rate of cervical dysplastic
325 lesions among women over 40 years old, with 92.3% of treated women
326 showing repair compared to only 50% of untreated controls ($p = 0.007$).
327 Cortés et al. (28) also evaluated HPV clearance in women over 40 years old,
328 finding an overall HPV clearance rate of 73.5%. The sub-analysis of the
329 PALOMA study (30) found an HPV clearance rate of 61.5% among treated
330 women compared to 50% of untreated controls ($p = 0.725$), though this result
331 was not statistically significant. Similarly, the study found no statistically
332 significant difference in the clearance of hrHPV, with a clearance rate of
333 66.7% in the treated group compared to 44.4% in the control group ($p =$
334 0.418). An overview of the effects of the CV-based vaginal gel on HPV-induced

335 cervical lesions and HPV clearance among women aged over 40 years is
336 presented in Table 2.

337 ***Satisfaction and compliance***

338 Perceived stress was analyzed in one study (32), whereas tolerability and
339 satisfaction with the use of the CV-based vaginal gel were analyzed in two of
340 the studies (28, 32). The level of stress was evaluated by a 14-item Perceived
341 Stress Scale, where a higher score represents a greater degree of perceived
342 stress. Serrano et al. (32) found that treatment with the CV-based vaginal gel
343 decreased the level of stress from a mean score of 21.1 at baseline to 19.0
344 after 6 months of treatment compared with the control group whose stress
345 increased from a mean score of 17.7 at baseline to 20.7 at 6-month follow-up.
346 Furthermore, this study found that 86.5% of treated women expressed
347 satisfaction after 6 months of use. Similarly, Cortés et al. (28), reported that
348 93.7% of treated women were satisfied with CV-based vaginal gel after 6
349 months of treatment. In both studies, there were no reports of dissatisfaction.
350 Additionally, both studies indicated very high compliance with the product,
351 with compliance rates of 94.2% in Cortés et al. (28) and 94.3% in Serrano et
352 al. (32). The reasons for non-compliance were menstruation, omissions and
353 one report of discomfort. The other three studies (29-31) included in this
354 review did not evaluate the level of stress, compliance, or
355 satisfaction/dissatisfaction with the product.

356 ***Side effects***

357 Two of the included studies (28, 32) reported side effects related to CV-based

358 vaginal gel. In general, the product was well-tolerated, with a few cases of
359 potential treatment-related side effects, such as vulvovaginal itching, skin
360 rash and other infections, noted. In the PALOMA study conducted by Serrano
361 et al.(32) 41% (n=7/17) of the reported side effects were considered directly
362 linked to the use of the CV-based vaginal gel. In the study by Cortés et al.(28)
363 a total of 8 side effects were reported, but only 3 of these were possibly
364 related to the use of the vaginal gel. In both studies most of the reported side
365 effects were classified as mild or moderate, and there were no reports of
366 severe side effects directly associated with the treatment. The most common
367 reported side effects include infections and vulvovaginal stinging and burning
368 (28, 32). One case with candidiasis was reported (32). The study by Criscuolo
369 et al. (29) reported data on adverse events, but found none, whereas the study
370 by Palacios et al. (31) did not collect any data on adverse events.

371 **Discussion**

372 To the best of our knowledge, this scoping review is the first to map the
373 existing evidence on the effectiveness and use of CV-based vaginal gel on the
374 clearance of vaginal HPV infection and regression of cervical dysplastic
375 lesions. This review highlights results from a limited number of recently
376 published studies with small sample sizes, all of which show promising
377 outcomes for CV-based vaginal gel as an effective and safe new treatment for
378 improving HPV clearance and repairing cervical dysplastic lesions (28-32).
379 Notably, this positive effect was also shown for women infected with hrHPV
380 (28, 29, 32) as well as women over 40 years old (28, 30), suggesting a
381 potential effective treatment also for women around post-menopausal age.

382 Importantly, no serious adverse events were reported related to the use of CV-
383 based vaginal gel.

384 The repair of cervical dysplastic lesions after treatment with CV-based vaginal
385 gel was evaluated by cytology and colposcopy at baseline and after 6 months
386 of treatment in four studies (28-30, 32). However, these studies included only
387 women with ASCUS or LSIL and excluded those with HSIL because of the
388 necessity of conization. One study by Criscuolo et al. (29) did not exclude
389 women with HSIL but was only able to include one HSIL patient for the trial.
390 Consequently, it is not possible to evaluate the effects of CV-based treatment
391 on HSIL changes or compare CV-based treatment with conventional
392 conization treatment. Overall, all studies highlight a high and significant rate
393 in the repair of cervical dysplastic lesions when compared with untreated
394 controls (60.8% vs 40.8%) (29) and (84.9% vs 64.5%) (32). However, the rate
395 of repair of cervical dysplastic lesions among untreated controls was relatively
396 high in these studies (40.8% (29) and 64.5% (32)), indicating that natural
397 repair of cervical lesions may overestimate the effect of the CV-based vaginal
398 gel (28-30, 32). Notably, only one of the studies (28) used cervical biopsies to
399 grade cervical dysplasia. The use of biopsies would have allowed for a more
400 accurate assessment of the degree of dysplasia compared to colposcopic
401 assessment. The absence of biopsies in these studies (29-32) may therefore
402 have led to an overestimation of the gel's efficacy, as cervical dysplasia could
403 have been present undetected by colposcopy. Furthermore, colposcopic
404 evaluation depends on examiners expertise, introducing a potential risk of
405 inter-observer variability.

406 Another measurement of the progression or regression of cervical dysplastic
407 lesions is the score of cervical re-epithelialization, which ranges from 5 to 1.
408 Cervical re-epithelialization was evaluated in two studies (31, 32), which
409 suggested an improvement in the re-epithelialization score after treatment with
410 CV-based vaginal gel.

411

412 In the studies included, HPV clearance was variably defined, encompassing
413 both total and partial clearance. Of the four studies assessing HPV clearance,
414 only one (29) reported data separately for total and partial clearance, whereas
415 the others (28, 30-32) combined these outcomes into a single HPV clearance
416 category. Across the four studies clearance rates ranged from 58.7% to 75.9%
417 (28-30, 32). Two studies also reported significant hrHPV clearance rates of
418 70.6% and 67.0% (28, 32). In studies including untreated control groups, HPV
419 clearance was consistently higher among women receiving CV-based vaginal
420 gel, with HPV clearance rate of 75.9% vs. 41.9% (32) and hrHPV clearance
421 rates of 67.0% vs 37.2% (30) and 66.7% vs 44.4% (29), suggesting a potential
422 acceleration of HPV resolution compared with no intervention. These
423 clearance rates exceed those reported natural HPV resolution in other studies,
424 approximately 29% at 6 months and 41% at 18 months for HPV (34) and 43%
425 at 6 months and 65% at 18 months for hrHPV (35) indicating that the gel may
426 enhance or expedite HPV clearance. Notably, one study (32) found no
427 significant HPV/hrHPV clearance at one month follow-up, but demonstrated a
428 clear treatment effect after three months, suggesting that treatment duration
429 may affect efficacy.

430

431 Recent research has explored complementary and alternative medicines
432 (CAM) as a treatment for HPV related diseases. None of the studies included
433 in this review compared CV-based vaginal gel with other treatment
434 opportunities, limiting conclusions about its relative efficacy. A scoping review
435 published in 2024 (36) identified several promising CAM interventions for
436 HPV, and highlights the CV-mushroom, the phytochemical indole-3-carbinol
437 (I3C), and the mineral selenium as the most effective interventions. However,
438 carageenan-based treatment and probiotics were not included in the review.

439 Other vaginal formulations have also shown potential, such as the
440 antioxidative sodium selenite and carageenan-based vaginal gel, which both
441 showed regression of HPV-induced cervical dysplasia and improved HPV
442 clearance (37-40). Interestingly, carageenan-based vaginal gel has been
443 reported to prevent HPV infection when applied before vaginal intercourse,
444 highlighting its potential as treatment in developing countries (36, 39, 40).

445 The vaginal microbiome is another factor influencing HPV persistence and
446 clearance. CV-based vaginal gel has been shown to exert moisturizing, tissue
447 regenerating and re-epithelializing effects, while promoting restoration of a
448 vaginal ecosystem, thereby beneficial effects on the vaginal microbiota
449 contributing to HPV clearance and protection against reinfection are reported
450 (29, 41). A Lactobacillus dominant microbiota is associated with higher HPV
451 clearance and regression of cervical lesions, whereas dysbiotic anaerobes may
452 contribute to HPV persistence and progression to cervical neoplasia (42, 43).

453 Supporting this, a recent RCT (44) involving 100 women with hrHPV infection
454 found that *Lactobacillus crispatus* CHEN-01 transplantation significantly
455 increased hrHPV clearance, reduced HPV viral load, and improved vaginal
456 inflammation compared with the placebo-group. This also suggests the
457 application of probiotics as an effective treatment opportunity for hrHPV.
458 Similarly, Palacios et. al (31) reported an increase in *Lactobacillus* species in
459 54.5% of the women treated with CV-based vaginal gel, and a subsequent
460 study (26), confirmed a microbiota shift toward beneficial species after
461 treatment with CV-based vaginal gel. Together, these studies suggest that CV-
462 based vaginal gel may help modulate the vaginal microbiome toward a more
463 antiviral *Lactobacillus* rich environment, potentially enhancing HPV
464 clearance. Future studies should include microbiome analyses to clarify these
465 interactions and their impact on HPV related cervical diseases.

466 **Limitations and further investigation**

467 The review is limited by the small number of available studies, reflecting that
468 research on CV-based vaginal gel is still relatively new and unexplored. A
469 major limitation of the included studies was heterogeneous in design, patient
470 populations, inclusion criteria, outcome measures and duration of treatment,
471 which complicates and limits the robustness of conclusion.

472 Geographical bias is another limitation as four out of the five studies (28, 30-
473 32) were conducted in Spain and one in Italy (29), restricting generalizability
474 of the findings to other populations. Given global differences in HPV subtypes,
475 screening programs, and healthcare systems, additional larger multinational

476 studies are needed to validate the CV-based vaginal gels efficacy across
477 broader clinical settings.

478 It is well known that some risk-factors can double or triple the risk of
479 precancer among women infected with an oncogenic HPV and could therefore
480 influence the efficacy of the treatment (6). However, not all the included
481 studies accounted for potential confounders such as hormonal contraceptive
482 use, number of sexual partners, immunosuppression or smoking status. All
483 these factors could potentially affect HPV persistence and progression,
484 thereby biasing into the reported results. Moreover, the absence of
485 histological confirmation in most studies may have led to an overestimation of
486 efficacy based on colposcopic findings alone.

487 Funding bias must also be considered as four out of five studies (28, 30-32)
488 were sponsored by ProCare Health, the company that manufactures
489 Papilocare®. This financial relationship may represent a potential conflict of
490 interest, as positive results or emphasis on the product's efficacy could
491 commercially benefit the sponsor. Additionally, some of the articles share the
492 same authors (28, 30-32). Although overlapping authorships and inclusion
493 period were limited, potential cohort overlapping could slightly inflate the
494 overall effect.

495 **Conclusion**

496 This scoping review suggests that CV-based vaginal gel shows promising but
497 preliminary efficacy in promoting regression of cervical dysplastic lesions and
498 HPV clearance. Importantly, the treatment was generally well tolerated.

499 However, interpretation is limited number of available studies, small and
500 regionally restricted cohorts, and the absence of biopsy validated outcomes.
501 Larger multinational RCTs with extended follow-up, histopathology-confirmed
502 outcomes, standardized definitions of HPV clearance, and consistent detection
503 methods are needed to confirm the efficacy of CV-based vaginal gel and to
504 define its role in clinical practice.

505 **Declarations**

506 Ethics approval and consent to participate; Not applicable
507 Consent for publication; Not applicable
508 Availability of data and materials: The datasets used and
509 analysed during the current study are available from the
510 corresponding author on reasonable request
511 Competing interests; Not applicable
512 Funding; No funding
513 Acknowledgements; Not applicable

514 **Authors' contributions**

515 Study idea and protocol design; PB, VMB.
516 Manuscript writing: IBH, MKK, PB, VMB
517 Comments on manuscript, review on final manuscript and
518 approving it: IBH, MKK, PB, VMB, MT, BA, LKP

Table 1. Overview of characteristics, treatment regime, follow-up time and endpoint analysis of the included articles

Author, year, Country	Study design	Study population	Subpopulations	Inclusion criteria	Treatment regime	Follow up	Endpoint s	Endpoint analysis
Cortés et al. (28) 2023, Spain	Prospective observational clinical study	n=192	<u>Women aged >40 years:</u> n= 74 <u>hrHPV:</u> n= 179	Women > 25 years old; HPV-positive or ASCUS or LSIL. Colposcopy image showing similar level of cervical dysplasia.	Papilocare®; one cannula every day for 21 days during the first month. Followed by one cannula alternate-day the next 5 months. Those who continued with altered cytology or colposcopy and/or persistent HPV were offered an additional 6 months.	6 months. 6 and 12 months for those who continued the treatment due to persistent HPV or altered cytology/colposcopy.	Repair of cervical lesions Partial or total clearance of HPV and hrHPV Level of satisfaction and tolerability	Cytology Colposcopy Biopsy PCR HPV test VAS
Palacios et al. (30) 2022, Spain	Multicenter RCT. Sub-analysis.	n=41	<u>Women aged >40 years:</u> n= 41 <u>hrHPV:</u> n=31	Women from the PALOMA study aged >40 years.	Papilocare® Group A; One cannula a day for 21 consecutive days followed by 7 days with no treatment. Followed by one cannula alternate-day (except during menstrual cycle) for 5 months. Group B: One cannula a day for 21 days followed by 7 days without treatment repeated over 3 months. Followed by one cannula alternate-day /except during menstrual cycle) for 3 months. Controls: Watchful waiting	6 months	Repair of cervical lesions Partial or total clearance of HPV and hrHPV	Cytology Colposcopy PCR HPV test
Serrano et al. (32) 2021, Spain	RCT	n= 91 59 intervention group (A and B) 32 controls	<u>hrHPV:</u> n= 70 hrHPV 44 intervention group	Women aged 30-65 years old; positive HPV test	Papilocare® Group A; One cannula a day for 21 consecutive days followed by 7 days	6 months	Repair of cervical lesions	Cytology Colposcopy PCR HPV test

		26 controls	and/or cytology with ASCUS, LSIL or AGUS together with concordant colposcopy images.	with no treatment. Followed by one cannula alternate-day (except during menstrual cycle) for 6 months.	Partial or total clearance of HPV and hrHPV	
				Group B: One cannula a day for 21 days followed by 7 days without treatment repeated over 3 months. Followed by one cannula alternate-day /except during menstrual cycle) for 3 months.	Vaginal health	Bachmann Vaginal Health index
				Controls: Watchful waiting	Cervical Re-epithelialization	5-point Likert scale
					Perceived stress and satisfaction	7-point Likert scale
					Adverse events	Self-reported
Criscuolo et al.(29) 2020, Italy	Observational retrospective study	n=183	hrHPV: n= 183 97 intervention group 86 controls	Women aged 18-49 years old; hrHPV-positive and normal or abnormal cytology (ASCUS, LSIL or HSIL).	Papilocare®; 1 cannula every day for 21 days in the first month. Followed by 1 cannula every other day the next 2 months (except menstrual cycle)	6 months
				Controls: Watchful waiting	Repair of cervical lesions	Cytology Colposcopy
					Partial or total clearance of hrHPV	PCR HPV-test
					Adverse Events	Self-reported
Palacios et al. (31) 2017, Spain	Observational Prospective study	n=21		Women aged 18-45 years old; no symptoms of vaginal disease and a normal smear. Epithelialization score between 4 and 1.	Coriolus Versicolor gel, Palomacare®; one cannula a day for 12 consecutive days	12 days
					Epithelialization of cervical mucosa	Colposcopy Ectopy epithelialization score
					Vaginal microbiota	Vaginal Status Diagnostic test
					Vaginal Health	5-point Likert scale
						Bachmann Vaginal Health index

ASCUS= atypical squamous cells of undetermined significance. LSIL = low-grade squamous intraepithelial lesion. HSIL = High-grade squamous intraepithelial lesion. hrHPV = high-risk Human Papillomavirus

Table 2. Overview of the effects of the CV-based vaginal gel on HPV-induced cervical lesions and HPV clearance.

	Total sample	hrHPV	Women aged >40 years
Cortés et al. (28) 2023, Spain	<p>Overall repair of HPV induced cervical lesions: 77.1% (95%CI unknown) at 6 months: 67.0% (95% CI: 60.4-73.7) at 12 months 58.8% (95% CI: 42.3-75.4)</p> <p>Overall clearance of HPV; 71.6% (95%CI unknown) at 6 months: 58.7% (95% CI: 51.7-65.8) at 12 months; 52.1% (95% CI: 38.0-66.2)</p>	<p>Overall repair of hrHPV induced cervical lesions: 76% (95%CI: 69.7-82.2) at 6 months: 66.9% (95%CI: 59.9-73.8) at 12 months: 54.8% (95%CI: 37.3-72.4%)</p> <p>Overall clearance of hrHPV: 70.6% (95%CI 63.9-77.3) at 6 months: 57.4% (95%CI: 50.1-64.7) at 12 months: 52.2% (95%CI: 37.7-80.1)</p>	<p>Overall repair of HPV induced lesions: 82.4% (95% CI: 73.8-91.1). at 6 months: 73.5% (95%CI: 63.0-84.0) at 12 months: 54.5% (95%CI: 25.1-84.0)</p> <p>Overall clearance of HPV; 75.3% (95%CI: 65.5-85.2) at 6 months: 61.1% (95%CI: 49.9-72.4) at 12 months: 57.9% (95%CI: 35.7-80.1)</p> <p>Overall clearance of hrHPV: 73.5% (95% CI: 65.5-85.2) at 6 months: 59.7% (95%CI: 48.0-71.5) at 12 months: 55.6% (95%CI: 32.6-78.5)</p>
Palacios et al. (30) 2022, Spain			<p>Overall repair of HPV induced cervical lesions; 92.3% vs. 50.0% (p=0.007)</p> <p>Overall repair of hrHPV induced cervical lesions: 90.5% vs. 33.3% (p=0.003)</p> <p>Overall clearance of HPV; 61.5% vs 50.0% (P=NS)</p> <p>Overall clearance of hrHPV: 66.7% vs 44.4% (P=NS)</p>
Serrano et al. (32) 2021, Spain	<p>Overall Repair of HPV induced cervical lesions; 84.9% vs. 64.5% (p=0.031)*</p>	<p>Overall repair of hrHPV induced cervical lesions; 87.8% vs 56.0% (p=0.003)*</p>	

Overall clearance of HPV;
 59.6% vs 41.9% (p=0.118)
 Group B; 75.9% vs 41.9% (p=0.008)
 Group A: 39.1% vs 41.9% (P=NS)

Overall clearance of hrHPV;
 62.5% vs 40.0% (P=NS)
 Group A; 38.9% vs 40.0% (P=NS)
 Group B: 81.8 % vs 40.0% (p=0.004)

	Total sample	hrHPV	Women aged >40 years
<i>Criscuolo et al.(29) 2020, Italy</i>			<p>Overall Repair of HPV induced cervical lesions; Colposcopy improvement in 76.1 vs 40.8% (p=0.0005) Colposcopy remission 60.9% vs 40.8% (p=0.05)</p> <p>Cytology improvement 78.5% vs 37.7% (p<0.0001) Cytology remission 70.8% vs 34.8% (<0.0001)</p> <p>Overall clearance of HPV; HPV-DNA improvement in 70.1% vs 37.2% (p<0.0001) HPV-DNA clearance in 67.0% vs 37.2% (p<0.0001)</p>
<i>Palacios et al. (31) 2017, Spain</i>	<p>Overall improvement of mean score of cervical epithelization; 3.09 at baseline to 4.42 at follow-up (p<0.001)</p> <p>Vaginal microbiotas mean score; 3.3 at baseline to 4.0 at follow-up (P=NS)</p> <p>Vaginal health mean score; 19.0 at baseline to 22.3 at follow-up (p=0.007)</p>		<p><i>*Group A and B were pooled into a single-</i></p>

treatment group for the main analysis. NS = Non-significant.

References

1. Wu J, Jin Q, Zhang Y, Ji Y, Li J, Liu X, et al. Global burden of cervical cancer: current estimates, temporal trend and future projections based on the GLOBOCAN 2022. *J Natl Cancer Cent.* 2025;5(3):322-9.
2. Piña-Sánchez P. Human Papillomavirus: Challenges and Opportunities for the Control of Cervical Cancer. *Arch Med Res.* 2022;53(8):753-69.
3. Okunade KS. Human papillomavirus and cervical cancer. *J Obstet Gynaecol.* 2020;40(5):602-8.
4. Laila Sara Arroyo e. International Human Papillomavirus Reference Center 2024 [cited 2024 nov 26]. Available from: https://www.hpvcenter.se/human_reference_clones/.
5. Sravani AB, Ghate V, Lewis S. Human papillomavirus infection, cervical cancer and the less explored role of trace elements. *Biol Trace Elem Res.* 2023;201(3):1026-50.
6. Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S. Human papillomavirus and cervical cancer. *Lancet.* 2007;370(9590):890-907.
7. Ma X, Yang M. The correlation between high-risk HPV infection and precancerous lesions and cervical cancer. *Am J Transl Res.* 2021;13(9):10830-6.
8. Soheili M, Keyvani H, Soheili M, Nasseri S. Human papilloma virus: A review study of epidemiology, carcinogenesis, diagnostic methods, and treatment of all HPV-related cancers. *Med J Islam Repub Iran.* 2021;35:65.
9. Abate A, Munshea A, Nibret E, Alemayehu DH, Alemu A, Abdissa A, et al. Persistence and clearance rates of human papillomaviruses in a cohort of women treated or not treated for cervical dysplasia in northwest Ethiopia. *Sci Rep.* 2025;15(1):8218.
10. Shanmugasundaram S, You J. Targeting Persistent Human Papillomavirus Infection. *Viruses.* 2017;9(8).
11. Hu Z, Ma D. The precision prevention and therapy of HPV-related cervical cancer: new concepts and clinical implications. *Cancer Med.* 2018;7(10):5217-36.
12. Tainio K, Athanasiou A, Tikkinen KAO, Aaltonen R, Cárdenas J, Hernández, et al. Clinical course of untreated cervical intraepithelial neoplasia grade 2 under active surveillance: systematic review and meta-analysis. *Bmj.* 2018;360:k499.
13. Bergqvist L, Virtanen A, Kalliala I, Bützow R, Jakobsson M, Heinonen A, et al. Predictors for regression and progression of actively surveilled cervical intraepithelial neoplasia grade 2: A prospective cohort study. *Acta Obstet Gynecol Scand.* 2025;104(4):763-73.
14. Bedell SL, Goldstein LS, Goldstein AR, Goldstein AT. Cervical Cancer Screening: Past, Present, and Future. *Sex Med Rev.* 2020;8(1):28-37.
15. Bosch FX, de Sanjosé S. The epidemiology of human papillomavirus infection and cervical cancer. *Dis Markers.* 2007;23(4):213-27.
16. Rosalik K, Tarney C, Han J. Human Papilloma Virus Vaccination. *Viruses.* 2021;13(6).
17. Dysplasiguide, forebyggelse, udredning og behandling af dysplasi Cervix November, 2022 [Available from: <https://static1.squarespace.com/static/5467abcce4b056d72594db79/t/63cd1a0c74b34357cc989258/1674385953293/Dysplasiguide.pdf>].
18. Rizzuto I, Nalam M, Jiang J, Linder A, Rufford B. Risk factors for HPV persistence and cytology anomalies at follow-up after treatment for cervical dysplasia. *Int J Gynaecol Obstet.* 2018;141(2):240-4.

19. McBride E, Tatar O, Rosberger Z, Rockliffe L, Marlow LAV, Moss-Morris R, et al. Emotional response to testing positive for human papillomavirus at cervical cancer screening: a mixed method systematic review with meta-analysis. *Health Psychol Rev*. 2021;15(3):395-429.

20. Thangarajah F, Einzmann T, Bergauer F, Patzke J, Schmidt-Petruschkat S, Theune M, et al. Cervical screening program and the psychological impact of an abnormal Pap smear: a self-assessment questionnaire study of 590 patients. *Arch Gynecol Obstet*. 2016;293(2):391-8.

21. Jeitler M, Michalsen A, Frings D, Hübner M, Fischer M, Koppold-Liebscher DA, et al. Significance of Medicinal Mushrooms in Integrative Oncology: A Narrative Review. *Front Pharmacol*. 2020;11:580656.

22. Dou H, Chang Y, Zhang L. *Coriolus versicolor* polysaccharopeptide as an immunotherapeutic in China. *Prog Mol Biol Transl Sci*. 2019;163:361-81.

23. Rokos T, Pribulova T, Kozubik E, Biringer K, Holubekova V, Kudela E. Exploring the Bioactive Mycocompounds (Fungal Compounds) of Selected Medicinal Mushrooms and Their Potentials against HPV Infection and Associated Cancer in Humans. *Life (Basel)*. 2023;13(1).

24. Saleh MH, Rashedi I, Keating A. Immunomodulatory Properties of *Coriolus versicolor*: The Role of Polysaccharopeptide. *Front Immunol*. 2017;8:1087.

25. Seo DJ, Choi C. Antiviral Bioactive Compounds of Mushrooms and Their Antiviral Mechanisms: A Review. *Viruses*. 2021;13(2).

26. Silvia G, Luís S, Javier C, Teresa V, José G-M, Francesca A, et al. Effect of a *Coriolus versicolor*-based vaginal gel on cervical epithelialization and vaginal microbiota in HPV-positive women: EPICERVIX pilot study
Eficacia de un gel vaginal basado en *Coriolus versicolor* sobre la epitelización cervical y la microbiota vaginal en mujeres positivas al VPH: Estudio piloto EPICERVIX. *Academic Journal of Health Sciences: Medicina Balear*. 2022;37(2):139-45.

27. Papilocare, <https://papilocare.com/en/papilocare-vaginal-gel/> 2024, april [

28. Cortés Bordoy J, de Santiago García J, Agenjo González M, Dexeu Carter D, Fiol Ruiz G, García Ferreiro C, et al. Effect of a Multi-Ingredient *Coriolus-versicolor*-Based Vaginal Gel in Women with HPV-Dependent Cervical Lesions: The Papilobs Real-Life Prospective Study. *Cancers (Basel)*. 2023;15(15).

29. Criscuolo AA, Sesti F, Piccione E, Mancino P, Belloni E, Gullo C, et al. Therapeutic Efficacy of a *Coriolus versicolor*-Based Vaginal Gel in Women with Cervical Uterine High-Risk HPV Infection: A Retrospective Observational Study. *Adv Ther*. 2021;38(2):1202-11.

30. Gil-Antuñano SP, Serrano Cogollor L, López Díaz AC, González Rodríguez SP, Dexeu Carter D, Centeno Mediavilla C, et al. Efficacy of a *Coriolusversicolor*-Based Vaginal Gel in Human Papillomavirus-Positive Women Older Than 40 Years: A Sub-Analysis of PALOMA Study. *J Pers Med*. 2022;12(10).

31. Palacios S, Losa F, Dexeu D, Cortés J. Beneficial effects of a *Coriolus versicolor*-based vaginal gel on cervical epithelialization, vaginal microbiota and vaginal health: a pilot study in asymptomatic women. *BMC Womens Health*. 2017;17(1):21.

32. Serrano L, López AC, González SP, Palacios S, Dexeu D, Centeno-Mediavilla C, et al. Efficacy of a *Coriolus versicolor*-Based Vaginal Gel in Women With Human Papillomavirus-Dependent Cervical Lesions: The PALOMA Study. *J Low Genit Tract Dis*. 2021;25(2):130-6.

33. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *Bmj*. 2021;372:n71.

34. Bertelsen VM, Tranberg M, Petersen LK, Booth B, Bor P. Improving diagnostic of cervical dysplasia among postmenopausal women aged ≥ 50 years using local vaginal oestrogen treatment prior to colposcopy: study protocol for a multicentre randomised controlled trial (the IDEAL study). *BMJ Open*. 2024;14(6):e082833.

35. Bulkmans NW, Berkhof J, Bulk S, Bleeker MC, van Kemenade FJ, Rozendaal L, et al. High-risk HPV type-specific clearance rates in cervical screening. *Br J Cancer*. 2007;96(9):1419-24.

36. Walsh CJ, Friedman JC, Piper C, Conageski C. A Scoping Review of Complementary and Alternative Medicine for Human Papillomavirus Infections and Cervical Dysplasia. *J Low Genit Tract Dis*. 2024;28(3):240-53.

37. Huber J, Mueller A, Sailer M, Regidor PA. Human papillomavirus persistence or clearance after infection in reproductive age. What is the status? Review of the literature and new data of a vaginal gel containing silicate dioxide, citric acid, and selenite. *Womens Health (Lond)*. 2021;17:17455065211020702.

38. Major AL, Dvořák V, Schwarzová J, Skřivánek A, Malík T, Pluta M, et al. Efficacy and safety of an adsorbent and anti-oxidative vaginal gel on CIN1 and 2, on high-risk HPV, and on p16/Ki-67: a randomized controlled trial. *Arch Gynecol Obstet*. 2021;303(2):501-11.

39. Laurie C, El-Zein M, Botting-Provost S, Tota JE, Tellier PP, Coutlée F, et al. Efficacy and safety of a self-applied carrageenan-based gel to prevent human papillomavirus infection in sexually active young women (CATCH study): an exploratory phase IIB randomised, placebo-controlled trial. *EClinicalMedicine*. 2023;60:102038.

40. Perino A, Consiglio P, Maranto M, De Franciscis P, Marci R, Restivo V, et al. Impact of a new carrageenan-based vaginal microbicide in a female population with genital HPV-infection: first experimental results. *Eur Rev Med Pharmacol Sci*. 2019;23(15):6744-52.

41. Mortaki D, Gkegkes ID, Psomiadou V, Blontzos N, Prodromidou A, Lefkopoulos F, et al. Vaginal microbiota and human papillomavirus: a systematic review. *J Turk Ger Gynecol Assoc*. 2020;21(3):193-200.

42. Bokulich NA, Łaniewski P, Adamov A, Chase DM, Caporaso JG, Herbst-Kralovetz MM. Multi-omics data integration reveals metabolome as the top predictor of the cervicovaginal microenvironment. *PLoS Comput Biol*. 2022;18(2):e1009876.

43. Mitra A, MacIntyre DA, Lee YS, Smith A, Marchesi JR, Lehne B, et al. Cervical intraepithelial neoplasia disease progression is associated with increased vaginal microbiome diversity. *Sci Rep*. 2015;5:16865.

44. Liu Y, Zhao X, Wu F, Chen J, Luo J, Wu C, et al. Effectiveness of vaginal probiotics *Lactobacillus crispatus* chen-01 in women with high-risk HPV infection: a prospective controlled pilot study. *Aging (Albany NY)*. 2024;16(14):11446-59.